Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178124

RESUMO

Plant cells are surrounded by a cell wall, a rigid structure that is not only important for cell and organ shape, but is also crucial for intercellular communication and interactions with the environment. In the flowering plant Arabidopsis thaliana, the 17 members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase family are involved in a multitude of physiological and developmental processes, making it difficult to assess their primary or ancestral function. To reduce genetic complexity, we characterized the single CrRLK1L gene of Marchantia polymorpha, MpFERONIA (MpFER). Plants with reduced MpFER levels show defects in vegetative development, i.e. rhizoid formation and cell expansion, and have reduced male fertility. In contrast, cell integrity and morphogenesis of the gametophyte are severely affected in Mpfer null mutants and MpFER overexpression lines. Thus, we conclude that the CrRLK1L gene family originated from a single gene with an ancestral function in cell expansion and the maintenance of cellular integrity. During land plant evolution, this ancestral gene diversified to fulfill a multitude of specialized physiological and developmental roles in the formation of both gametophytic and sporophytic structures essential to the life cycle of flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Germinativas Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
PLoS Comput Biol ; 18(4): e1009242, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377870

RESUMO

Ratiometric time-lapse FRET analysis requires a robust and accurate processing pipeline to eliminate bias in intensity measurements on fluorescent images before further quantitative analysis can be conducted. This level of robustness can only be achieved by supplementing automated tools with built-in flexibility for manual ad-hoc adjustments. FRET-IBRA is a modular and fully parallelized configuration file-based tool written in Python. It simplifies the FRET processing pipeline to achieve accurate, registered, and unified ratio image stacks. The flexibility of this tool to handle discontinuous image frame sequences with tailored configuration parameters further streamlines the processing of outliers and time-varying effects in the original microscopy images. FRET-IBRA offers cluster-based channel background subtraction, photobleaching correction, and ratio image construction in an all-in-one solution without the need for multiple applications, image format conversions, and/or plug-ins. The package accepts a variety of input formats and outputs TIFF image stacks along with performance measures to detect both the quality and failure of the background subtraction algorithm on a per frame basis. Furthermore, FRET-IBRA outputs images with superior signal-to-noise ratio and accuracy in comparison to existing background subtraction solutions, whilst maintaining a fast runtime. We have used the FRET-IBRA package extensively to quantify the spatial distribution of calcium ions during pollen tube growth under mechanical constraints. Benchmarks against existing tools clearly demonstrate the need for FRET-IBRA in extracting reliable insights from FRET microscopy images of dynamic physiological processes at high spatial and temporal resolution. The source code for Linux and Mac operating systems is released under the BSD license and, along with installation instructions, test images, example configuration files, and a step-by-step tutorial, is freely available at github.com/gmunglani/fret-ibra.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Software , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Razão Sinal-Ruído
4.
Biomech Model Mechanobiol ; 20(6): 2287-2297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431032

RESUMO

The sensory hairs of the Venus flytrap (Dionaea muscipula Ellis) detect mechanical stimuli imparted by their prey and fire bursts of electrical signals called action potentials (APs). APs are elicited when the hairs are sufficiently stimulated and two consecutive APs can trigger closure of the trap. Earlier experiments have identified thresholds for the relevant stimulus parameters, namely the angular displacement [Formula: see text] and angular velocity [Formula: see text]. However, these experiments could not trace the deformation of the trigger hair's sensory cells, which are known to transduce the mechanical stimulus. To understand the kinematics at the cellular level, we investigate the role of two relevant mechanical phenomena: viscoelasticity and intercellular fluid transport using a multi-scale numerical model of the sensory hair. We hypothesize that the combined influence of these two phenomena and [Formula: see text] contribute to the flytrap's rate-dependent response to stimuli. In this study, we firstly perform sustained deflection tests on the hair to estimate the viscoelastic material properties of the tissue. Thereafter, through simulations of hair deflection tests at different loading rates, we were able to establish a multi-scale kinematic link between [Formula: see text] and the cell wall stretch [Formula: see text]. Furthermore, we find that the rate at which [Formula: see text] evolves during a stimulus is also proportional to [Formula: see text]. This suggests that mechanosensitive ion channels, expected to be stretch-activated and localized in the plasma membrane of the sensory cells, could be additionally sensitive to the rate at which stretch is applied.


Assuntos
Droseraceae/fisiologia , Transporte Biológico , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Modelos Biológicos , Estimulação Física , Reologia , Viscosidade
5.
Nat Commun ; 12(1): 2583, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972516

RESUMO

Quantitative micromechanical characterization of single cells and multicellular tissues or organisms is of fundamental importance to the study of cellular growth, morphogenesis, and cell-cell interactions. However, due to limited manipulation capabilities at the microscale, systems used for mechanical characterizations struggle to provide complete three-dimensional coverage of individual specimens. Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes. It reveals local variations in apparent stiffness for single specimens, providing previously inaccessible information and datasets on mechanical properties that serve as the basis for biophysical modelling and allow deeper insights into the biomechanics of these living systems.


Assuntos
Imageamento Tridimensional/métodos , Micromanipulação/instrumentação , Micromanipulação/métodos , Microscopia de Força Atômica/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Acústica , Animais , Fenômenos Biomecânicos , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/citologia , Parede Celular/ultraestrutura , Lilium/citologia , Microscopia Eletrônica de Varredura , Morfogênese , Células Vegetais , Pólen/citologia , Pólen/ultraestrutura
6.
Methods Cell Biol ; 160: 297-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896323

RESUMO

Plant growth and morphogenesis are tightly controlled processes of division and expansion of individual cells. To fully describe the factors that influence cell expansion, it is necessary to quantify the counteracting forces of turgor pressure and cell wall stiffness, which together determine whether and how a cell expands. Several methods have been developed to measure these parameters, but most of them provide only values for one or the other, and thus require complex models to derive the missing quantity. Furthermore, available methods for turgor measurement are either accurate but invasive, like the pressure probe; or they lack accuracy, such as incipient plasmolysis or indentation-based methods that rely on information about the mechanical properties of the cell wall. Here, we describe a system that overcomes many of the above-mentioned disadvantages using growing pollen tubes of Lilium longiflorum as a model. By combining non-invasive microindentation and cell compression experiments, we separately measure turgor pressure and cell wall elasticity on the same pollen tube in parallel. Due to the modularity of the setup and the large range of the micro-positioning system, our method is not limited to pollen tubes but could be used to investigate the biomechanical properties of many other cell types or tissues.


Assuntos
Parede Celular/metabolismo , Elasticidade , Lilium/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pressão , Fenômenos Biomecânicos
7.
PLoS Biol ; 18(7): e3000740, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32649659

RESUMO

The carnivorous Venus flytrap catches prey by an ingenious snapping mechanism. Based on work over nearly 200 years, it has become generally accepted that two touches of the trap's sensory hairs within 30 s, each one generating an action potential, are required to trigger closure of the trap. We developed an electromechanical model, which, however, suggests that under certain circumstances one touch is sufficient to generate two action potentials. Using a force-sensing microrobotic system, we precisely quantified the sensory-hair deflection parameters necessary to trigger trap closure and correlated them with the elicited action potentials in vivo. Our results confirm the model's predictions, suggesting that the Venus flytrap may be adapted to a wider range of prey movements than previously assumed.


Assuntos
Droseraceae/fisiologia , Percepção do Tato/fisiologia , Potenciais de Ação/fisiologia , Fenômenos Biomecânicos , Eletricidade , Modelos Biológicos , Estimulação Física , Torque
8.
Methods Mol Biol ; 2160: 275-292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529444

RESUMO

Pollen tubes face many obstacles on their way to the ovule. They have to decide whether to navigate around cells or penetrate the cell wall and grow through it or even within it. Besides chemical sensing, which directs the pollen tubes on their path to the ovule, this involves mechanosensing to determine the optimal strategy in specific situations. Mechanical cues then need to be translated into physiological signals, which eventually lead to changes in the growth behavior of the pollen tube. To study these events, we have developed a system to directly quantify the forces involved in pollen tube navigation. We combined a lab-on-a-chip device with a microelectromechanical systems-based force sensor to mimic the pollen tube's journey from stigma to ovary in vitro. A force-sensing plate creates a mechanical obstacle for the pollen tube to either circumvent or attempt to penetrate while measuring the involved forces in real time. The change of growth behavior and intracellular signaling activities can be observed with a fluorescence microscope.


Assuntos
Microfluídica/métodos , Tubo Polínico/fisiologia , Robótica/métodos , Estresse Mecânico , Arabidopsis , Cálcio/metabolismo , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Tubo Polínico/metabolismo , Robótica/instrumentação
9.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396579

RESUMO

Insects fall prey to the Venus flytrap (Dionaea muscipula) when they touch the sensory hairs located on the flytrap lobes, causing sudden trap closure. The mechanical stimulus imparted by the touch produces an electrical response in the sensory cells of the trigger hair. These cells are found in a constriction near the hair base, where a notch appears around the hair's periphery. There are mechanosensitive ion channels (MSCs) in the sensory cells that open due to a change in membrane tension; however, the kinematics behind this process is unclear. In this study, we investigate how the stimulus acts on the sensory cells by building a multi-scale hair model, using morphometric data obtained from µ-CT scans. We simulated a single-touch stimulus and evaluated the resulting cell wall stretch. Interestingly, the model showed that high stretch values are diverted away from the notch periphery and, instead, localized in the interior regions of the cell wall. We repeated our simulations for different cell shape variants to elucidate how the morphology influences the location of these high-stretch regions. Our results suggest that there is likely a higher mechanotransduction activity in these 'hotspots', which may provide new insights into the arrangement and functioning of MSCs in the flytrap.


Assuntos
Droseraceae/fisiologia , Insetos/fisiologia , Mecanotransdução Celular/fisiologia , Folhas de Planta/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Estruturas da Membrana Celular/fisiologia , Droseraceae/citologia , Fenômenos Eletromagnéticos , Folhas de Planta/citologia , Transdução de Sinais/fisiologia
10.
Curr Opin Plant Biol ; 52: 131-139, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648148

RESUMO

In plants, cell-shape is defined by the cell wall, a complex network of polymers located outside the plasma membrane. During cell growth, cell wall properties have to be adjusted, assuring cell expansion without compromising cell integrity. Plasma membrane-located receptors sense cell wall properties, transducing extracellular signals into intracellular cascades through the cell wall integrity (CWI) pathway that, in turn, leads to adjustments in the regulation and composition of the cell wall. Using pollen tube growth as a single celled model system, we describe the importance of RAPID ALKALINIZATION FACTOR (RALF) peptides as sensors of cell wall integrity. RALF peptides can mediate the communication between cell wall components and plasma membrane-localized receptor-like kinases (RLKs) of the CrRLK1L family. The subsequent activation of intracellular pathways regulates H+, Ca2+, and ROS levels in the cell and apoplast, thereby modulating cell wall integrity. Interestingly, the RALF-CrRLK1L module and some of the components working up- and downstream of the RLK is conserved in many other developmental and physiological signaling processes.


Assuntos
Parede Celular , Tubo Polínico , Fosfotransferases , Polinização , Transdução de Sinais
11.
New Phytol ; 220(1): 187-195, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29905972

RESUMO

Physical forces are involved in the regulation of plant development and morphogenesis by translating mechanical stress into the modification of physiological processes, which, in turn, can affect cellular growth. Pollen tubes respond rapidly to external stimuli and provide an ideal system to study the effect of mechanical cues at the single-cell level. Here, pollen tubes were exposed to mechanical stress while monitoring the reconfiguration of their growth and recording the generated forces in real-time. We combined a lab-on-a-chip device with a microelectromechanical systems (MEMS)-based capacitive force sensor to mimic and quantify the forces that are involved in pollen tube navigation upon confronting mechanical obstacles. Several stages of obstacle avoidance were identified, including force perception, growth adjustment and penetration. We have experimentally determined the perceptive force threshold, which is the force threshold at which the pollen tube reacts to an obstacle, for Lilium longiflorum and Arabidopsis thaliana. In addition, the method we developed provides a way to calculate turgor pressure based on force and optical data. Pollen tubes sense physical barriers and actively adjust their growth behavior to overcome them. Furthermore, our system offers an ideal platform to investigate intracellular activity during force perception and growth adaption in tip growing cells.


Assuntos
Tubo Polínico/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Fenômenos Biomecânicos , Sistemas Microeletromecânicos , Tubo Polínico/crescimento & desenvolvimento , Pressão , Especificidade da Espécie
12.
J Vis Exp ; (134)2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29708535

RESUMO

Due to its formidable tools for molecular genetic studies, Arabidopsis thaliana is one of the most prominent model species in plant biology and, especially, in plant reproductive biology. However, plant morphological, anatomical, and ultrastructural analyses traditionally involve time-consuming embedding and sectioning procedures for bright field, scanning, and electron microscopy. Recent progress in confocal fluorescence microscopy, state-of-the-art 3-D computer-aided microscopic analyses, and the continuous refinement of molecular techniques to be used on minimally processed whole-mount specimens, has led to an increased demand for developing efficient and minimal sample processing techniques. In this protocol, we describe techniques for properly dissecting Arabidopsis flowers and siliques, basic clearing techniques, and some staining procedures for whole-mount observations of reproductive structures.


Assuntos
Arabidopsis/anatomia & histologia , Microscopia Confocal/métodos , Manejo de Espécimes/métodos , Arabidopsis/ultraestrutura , Flores/ultraestrutura , Coloração e Rotulagem/métodos
13.
Plant Physiol ; 176(3): 1981-1992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247121

RESUMO

Leu-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal Leu-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis (Arabidopsisthaliana). Mutations in multiple pollen-expressed lrx genes cause severe defects in pollen germination and pollen tube growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the pollen tube growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modeling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Fenômenos Biofísicos , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/ultraestrutura , Análise de Elementos Finitos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Proteínas de Repetições Ricas em Leucina , Mutação/genética , Fenótipo , Pólen/citologia , Pólen/genética , Pólen/ultraestrutura , Tubo Polínico/citologia , Tubo Polínico/genética , Tubo Polínico/ultraestrutura , Proteínas/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/ultraestrutura
14.
Methods Mol Biol ; 1669: 3-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936645

RESUMO

In this introductory chapter, we describe male germline development in plants taking Arabidopsis thaliana as a reference species. We first describe the transition from sporophytic to germline development, then microsporogenesis including meiosis, followed by male gametophyte development prior to pollination, and finally the progamic phase culminating in double fertilization, which leads to the formation of the embryo and the endosperm. For detailed information on some of these processes or on the molecular underpinning of certain fate transitions, we refer the reader to recent reviews. An important but often neglected aspect of male gametophyte development is the formation of the unique pollen cell wall. In contrast to that of other plant cells, the pollen cell wall is composed of two principal layers, the intine and exine. While the intine, the inner pecto-cellulosic cell wall layer, is biochemically and structurally similar to a "classical" plant cell wall, the exine is a unique composite with sporopollenin as its main component. Biosynthesis of the cell wall is remarkably similar between the spores of mosses and ferns, and pollen of seed plants, although slight differences exist, even between closely related species (reviewed in Wallace et al., AoB Plants 2011:plr027, 2011). In the latter sections of this chapter, we will present a brief overview of cell wall development in Arabidopsis pollen, where this aspect has been intensively studied.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Gametogênese Vegetal/genética , Gametogênese Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/fisiologia , Pólen/genética , Pólen/metabolismo , Pólen/fisiologia
15.
Lab Chip ; 17(9): 1678, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28426092

RESUMO

Correction for 'High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes' by Chengzhi Hu et al., Lab Chip, 2017, 17, 671-680.

17.
Lab Chip ; 17(4): 671-680, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28098283

RESUMO

Pollen tubes are tip-growing plant cells that deliver the sperm cells to the ovules for double fertilization of the egg cell and the endosperm. Various directional cues can trigger the reorientation of pollen tube growth direction on their passage through the female tissues. Among the external stimuli, protons serve an important, regulatory role in the control of pollen tube growth. The generation of local guidance cues has been challenging when investigating the mechanisms of perception and processing of such directional triggers in pollen tubes. Here, we developed and characterized a microelectrode device to generate a local proton gradient and proton flux through water electrolysis. We confirmed that the cytoplasmic pH of pollen tubes varied with environmental pH change. Depending on the position of the pollen tube tip relative to the proton gradient, we observed alterations in the growth behavior, such as bursting at the tip, change in growth direction, or complete growth arrest. Bursting and growth arrest support the hypothesis that changes in the extracellular H+ concentration may interfere with cell wall integrity and actin polymerization at the growing tip. A change in growth direction for some pollen tubes implies that they can perceive the local proton gradient and respond to it. We also showed that the growth rate is directly correlated with the extracellular pH in the tip region. Our microelectrode approach provides a simple method to generate protons and investigate their effect on plant cell growth.


Assuntos
Microeletrodos , Tubo Polínico , Prótons , Técnicas de Cultura de Tecidos/métodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Dispositivos Lab-On-A-Chip , Lilium/citologia , Lilium/crescimento & desenvolvimento , Lilium/fisiologia , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Técnicas de Cultura de Tecidos/instrumentação
18.
PLoS One ; 11(12): e0168138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977748

RESUMO

Pollen tubes are used as a model in the study of plant morphogenesis, cellular differentiation, cell wall biochemistry, biomechanics, and intra- and intercellular signaling. For a "systems-understanding" of the bio-chemo-mechanics of tip-polarized growth in pollen tubes, the need for a versatile, experimental assay platform for quantitative data collection and analysis is critical. We introduce a Lab-on-a-Chip (LoC) concept for high-throughput pollen germination and pollen tube guidance for parallelized optical and mechanical measurements. The LoC localizes a large number of growing pollen tubes on a single plane of focus with unidirectional tip-growth, enabling high-resolution quantitative microscopy. This species-independent LoC platform can be integrated with micro-/nano-indentation systems, such as the cellular force microscope (CFM) or the atomic force microscope (AFM), allowing for rapid measurements of cell wall stiffness of growing tubes. As a demonstrative example, we show the growth and directional guidance of hundreds of lily (Lilium longiflorum) and Arabidopsis (Arabidopsis thaliana) pollen tubes on a single LoC microscopy slide. Combining the LoC with the CFM, we characterized the cell wall stiffness of lily pollen tubes. Using the stiffness statistics and finite-element-method (FEM)-based approaches, we computed an effective range of the linear elastic moduli of the cell wall spanning the variability space of physiological parameters including internal turgor, cell wall thickness, and tube diameter. We propose the LoC device as a versatile and high-throughput phenomics platform for plant reproductive and development biology using the pollen tube as a model.


Assuntos
Parede Celular/fisiologia , Dispositivos Lab-On-A-Chip , Lilium/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Módulo de Elasticidade , Polinização/fisiologia
19.
Lab Chip ; 17(1): 82-90, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27883138

RESUMO

Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.


Assuntos
Dispositivos Lab-On-A-Chip , Tubo Polínico/crescimento & desenvolvimento , Módulo de Elasticidade , Desenho de Equipamento , Lilium/crescimento & desenvolvimento , Lilium/metabolismo , Microfluídica/instrumentação , Microfluídica/métodos , Microscopia Eletrônica , Tubo Polínico/química
20.
Plant Physiol ; 172(4): 2388-2402, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27794100

RESUMO

The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Flores/embriologia , Flores/metabolismo , Sementes/embriologia , Amido/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Vias Biossintéticas/genética , Metabolismo dos Carboidratos/genética , Proliferação de Células , Simulação por Computador , Regulação para Baixo/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Mutação/genética , Especificidade de Órgãos/genética , Pólen/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Zigoto/citologia , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...